Package: gma 1.0

gma: Granger Mediation Analysis

Performs Granger mediation analysis (GMA) for time series. This package includes a single level GMA model and a two-level GMA model, for time series with hierarchically nested structure. The single level GMA model for the time series of a single participant performs the causal mediation analysis which integrates the structural equation modeling and the Granger causality frameworks. A vector autoregressive model of order p is employed to account for the spatiotemporal dependencies in the data. Meanwhile, the model introduces the unmeasured confounding effect through a nonzero correlation parameter. Under the two-level model, by leveraging the variabilities across participants, the parameters are identifiable and consistently estimated based on a full conditional likelihood or a two-stage method. See Zhao, Y., & Luo, X. (2017), Granger Mediation Analysis of Multiple Time Series with an Application to fMRI, <arxiv:1709.05328> for details.

Authors:Yi Zhao <[email protected]>, Xi Luo <[email protected]>

gma_1.0.tar.gz
gma_1.0.zip(r-4.5)gma_1.0.zip(r-4.4)gma_1.0.zip(r-4.3)
gma_1.0.tgz(r-4.4-any)gma_1.0.tgz(r-4.3-any)
gma_1.0.tar.gz(r-4.5-noble)gma_1.0.tar.gz(r-4.4-noble)
gma_1.0.tgz(r-4.4-emscripten)gma_1.0.tgz(r-4.3-emscripten)
gma.pdf |gma.html
gma/json (API)

# Install 'gma' in R:
install.packages('gma', repos = c('https://zhaoyi1026.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 stars 7 scripts 495 downloads 3 exports 60 dependencies

Last updated 7 years agofrom:eb424ae18c. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winOKNov 22 2024
R-4.5-linuxOKNov 22 2024
R-4.4-winOKNov 22 2024
R-4.4-macOKNov 22 2024
R-4.3-winOKNov 22 2024
R-4.3-macOKNov 22 2024

Exports:gmasim.data.ts.singlesim.data.ts.two

Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecowplotcpp11DerivdoBydplyrfansifarverFormulagenericsggplot2gluegtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpurrrquantregR6RColorBrewerRcppRcppEigenrlangscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr